

2N3501

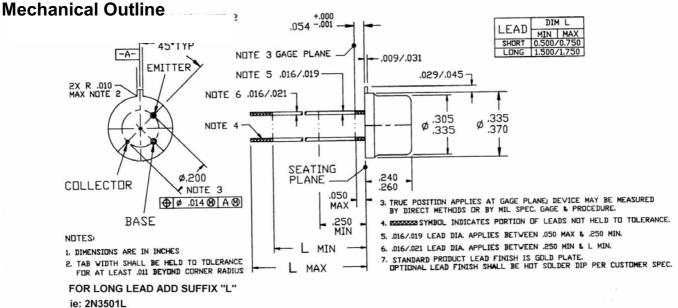
Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 (818) 701-4939

NPN **BIPOLAR TRANSISTOR**

150 Volts 500mAmps TO-39 Package


Features

- Meets MIL-S-19500/366
- Collector-Base Voltage 150V
- Collector Current: 500 mA
- Fast Switching 1265 nS Lead Free Finish/RoHS Compliant(Note 1) ("P" Suffix designates RoHS Compliant. See ordering information)

Maximum Ratings

RATING	SYMBOL	MAX.	UNIT	
Collector-Emitter Voltage	$V_{\sf CEO}$	150	Vdc	
Collector-Base Voltage	V_{CBO}	150	Vdc	
Emitter-Base Voltage	V_{EBO}	6.0	Vdc	
Collector Current—Continuous	I _C	300	mAdc	
Total Device Dissipation	P _D			
$@T_A = 25^{\circ}C$		1.0	Watt	
Derate above 25°C		5.71	mW/°C	
Total Device Dissipation	P _D			
$@T_{C} = 25^{\circ}C$		5.0	Watts	
Derate above 25°C		28.6	mW/°C	
Operating Temperature Range	TJ	-55 to	°C	
		+200		
Storage Temperature Range	T _S	-55 to	°C	
		+200		
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	175	°C/W	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	0		

Notes:1.High Temperature Solder Exemption Applied, see EU Directive Annex 7.

1 of 3

2N3501

Micro Commercial Components

Electrical Parameters (T_A @ 25°C unless otherwise specified)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Off Characteristics					
Collector-Emitter Breakdown Voltage(1)	BV _{CEO}				Vdc
$(I_C = 10 \text{ mAdc}, I_B = 0)$		150			
Collector-Base Breakdown Voltage	BV _{CBO}				Vdc
$(I_C = 10 \mu Adc, I_E = 0)$		150			
Emitter-Base Breakdown Voltage	BV _{EBO}				Vdc
$(I_E = 10 \mu Adc, I_C = 0)$		6.0			
Collector Cutoff Current	I _{CBO}				μAdc
$(V_{CB} = 75 \text{ Vdc}, I_{E} = 0)$				0.05	•
$(V_{CB} = 75 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$				50	
Emitter Cutoff Current	I _{EBO}				nAdc
$(V_{EB(off)} = 4.0 \text{ Vdc}, I_C = 0)$	250			25	
D.C. Current Gain	h _{FE}				
$(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$		25			
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$		35 50			
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$		75			
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$		100		300	
(I _c = 150 mAdc, V _{CE = 10Vdc) @ 55C}		45			
$(I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$		20			
Collector-Emitter Saturation Voltage(1)	V _{CE(Sat)}				Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	- OL(Oat)				
(I _C = 150 mAdc, I _B = 15 mAdc)				0.2	
	+ ,,			0.4	\
Base-Emitter Saturation Voltage(1)	V _{BE(Sat)}				Vdc
(I _C = 10 mAdc, I _B = 1.0 mAdc)				0.8	
(I _C = 150 mAdc, I _B = 15 mAdc)				1.2	
Magnitude of common emitter small-signal short-circuit forward current					
transfer ratio	/h _{fe} /	1.5		8	
$(V_{CE} = 20 \text{ Vdc}, I_{C} = 20 \text{ mAdc}, f = 100 \text{ MHz})$					
Output Capacitance	Сово				pf
$(V_{CB} = 10 \text{ Vdc}, I_{E} = 0, 100 \text{kHz} \le f \le 1 \text{MHz})$	- 080			8.0	μ.
Input Capacitance	C _{IBO}				pf
$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{kHz} \le f \le 100 \text{MHz})$	- 150			80	
Small -signal Current Gain	h _{fe}				
$(I_c = 10 \text{mAdc}, V_{ce} = 10 \text{Vdc}, f = 1.0 \text{ kHz})$	10	75		300	
Noise figure	NF			16	dB
$(V_{CE} = 10Vdc, I_C = 0.5mAdc; R_q = 1kohms, f = 1MHz)$					
Noise figure	NF			6	dB
$(V_{CE} = 10Vdc, I_C = 0.5mAdc; R_g = 1kohms, f = 1MHz)$		<u> </u>			
Turn - on time	t _{on}			115	nS
$(V_{EB} = 12Vdc, I_{C} = 150mAdc, I_{B1} = 15mAdc)$					
Turn - off time	t _{off}			1150	nS
$(I_C = 150 \text{mAdc}, I_{B1} = I_{B2} = -15 \text{mAdc})$					
]			

⁽¹⁾ Pulse Test: Pulse Width \leq 300 ms, Duty Cycle \leq 2.0%

Ordering Information :

Device	Packing
Part Number-BP	Bulk; 50pcs/Box

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.